

Taxonomy for Transactional Memory Systems

Shweta Kulkarni* Prachi Kulkarni* Juie Deshpande* Priyadarshini Kakade*

Priti Ranadiveξ Madhuri Tasgaonakar* Shilpa Deshpande*

* Cummins College of Engineering for Women, Pune, India

ξ Center for Research in Engineering Sciences and Technology (CREST),

KPIT Cummins Infosystems Ltd., Pune, India

Abstract-The emergence of multi-core systems has given rise

to the need of developing multi-threaded applications. To

ensure synchronization between concurrent operations lock

based mechanisms are used. Nevertheless, conventional lock

based synchronization techniques lead to problems such as

deadlocks, priority inversion and convoying. Moreover, lock

based synchronization mechanisms are not scalable.

Transactional memory (TM) is being considered as an

effective alternative to conventional lock based

synchronization mechanisms. In the past decade, different

methods to implement TM systems have been proposed.

These approaches are either software-only, hardware-only

or hybrid approaches. In this paper, we present a review of

the different design approaches to implement TM systems.

We also present a taxonomy that classifies these design

approaches and discuss the common issues that need to be

considered while implementing a TM system. In addition we

present taxonomy for TM in embedded systems.

Keywords: Transactional memory, Lock-free synchronization,

TM Taxonomy

I. INTRODUCTION

Advances in semiconductor technology were initially
responsible for improved processor performance.
However, practical limits on power dissipation restrict the
increase in clock speed. The current decade marks the
transition from sequential to parallel computation. With
the advent of multi-core systems multi-threaded
applications are being developed. To ensure that the
concurrent operations do not interfere, synchronization
mechanisms such as locking are essential. For each data
structure, a lock indicates whether the structure is in use or
not. Threads cooperate by acquiring the lock before
accessing the corresponding data.

Nevertheless, conventional synchronization techniques
based on locks have substantial limitations. Coarse grained
locks do not scale while fine-grained locks increases lock
overhead. In particular, they introduce problems such as
deadlocks, priority inversion and convoying. Programs
written using other synchronization constructs such as
semaphores and monitors are difficult to design, construct,
maintain and often do not perform well.

Transactional memory [23] is a new programming
construct that provides a high-level abstraction for writing
parallel programs. Transactional memory tries to reduce
the difficulty of writing concurrent programs by providing
atomic and isolated execution of code. TM shifts the
burden of correct synchronization from the programmer to
TM system. Transactional Memory borrows concepts from
the domain of database systems. Similar to database
transactions, TM has Atomicity, Consistency, and
Isolation (ACI) properties: Atomicity guarantees that
transactions execute as an indivisible unit and either
commit or abort as a whole, Consistency guarantees that
transactions follow the same order during the whole
process, and Isolation guarantees that each transaction‟s
operations are isolated to other transactions.

The proposed Transactional Memory approaches can
be broadly classified as Hardware (HTM)
[18][19][12][20][21][23][25][26][28] and Software
(STM)[10][11][13][15][16][29][30][31][33][34][35][36].
Hardware approach exhibits high performance and strong
atomicity but has shortcomings such as lack of support for
unbounded transactions, architectural limitations, less
flexibility and design complexity. In order to overcome
the problem of limited hardware resources and to support
unbounded transactions most implementations employ
some virtualization techniques. Software implementations
are cost-effective and flexible than HTMs but are slower
as compared to HTMs. Moreover, poor performance and
weak atomicity are two serious concerns while
implementing TM totally in software. Thus, each of these
approaches has its own advantages as well as limitations.
In order to avail the benefits of the two, hybrid
implementations have been proposed
[1][2][3][4][5][6][7][8].The most notable proposal Hybrid
Transactional memory (HyTM) by Damron et al. [2]
exploits HTM support to achieve high performance and
scalability while using software to support transactions
that exceed hardware limits.

Recently TM implementations for embedded multi-
core systems are being proposed considering energy
consumption and complexity as a major design aspects
[36][37][38][39][40]. These implementations are mostly
hardware-only implementations.

Shweta Kulkarni et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (2) , 2011, 766-775

766

In this paper we present a review of the different
implementations and also provide taxonomy for TM
systems. Chen Fu et al. [46] have proposed a taxonomy
but limited to HTM. We extend this to include all types of
TM along with Embedded-TM. We also give a brief
introduction to other synchronization apart from TM and
locks. The rest of the paper is organized as follows:
section II mentions the proposed taxonomy, section III
mentions other synchronization approaches apart from
locks and TM such as TLRW [41]. In this section we also
discuss an investigation of interaction of TM and locks
based codes [43]. Section IV presents the observations
and conclusions.

II. TAXONOMY

We take a top-down approach to classify TM systems that
deal with issues of transaction conflicts, support for
virtualization, isolation and nesting. We also classify the
systems on basis of whether modifications are performed
at the processor level, in the operating system or only in
software.

A. Taxonomy based on conflicts

Conflicts occur when two or more threads access the same
resource. We classify first and foremost on basis of
conflict detection.

Conflict detection method can be lazy or eager.
In eager conflict detection the conflicts are resolved as
soon as thread seeks data that conflicts with one or more
other transactions. On the other hand, lazy mechanism
executes a transaction optimistically assuming no
conflicts. Conflicts are resolved when a transaction
conflicting with other transaction seeks to commit.
Conflict detection is usually combined with version
management parameter.

 Version management refers to how to store new
and old data. The existing proposals can be classified on
basis of version management as eager and lazy. Lazy
version management leaves old values in the memory
while new values are stored elsewhere and written back
after a transaction executes successfully. Although this
makes aborts faster, the more common case of transaction
commit shows degradation in performance. On the
contrary, in eager version management updates are carried
out “in place” while old values are stored elsewhere (in a
log). Naturally, commits are faster and aborts involve
considerable overhead of writing data back to the
memory. On combining conflict detection and version
management, we have four categories viz. Eager-eager,
eager-lazy, lazy-eager, lazy-lazy. No proposals attempted
to combine eager version management and lazy conflict
detection possibly due to the semantic problem of eagerly
updating data while postponing conflict detection until
commit. Recently, Anurag Negi et.al. [47][48] have
proposed a HTM with lazy versioning and eager/lazy
conflict resolution method.

The next question arises as to what to do when a
conflict is detected. The implementation may either stall a
transaction (risk of deadlock) or abort it (risking a live
lock) or leave the decision to a software contention
manager. Further the TM system has to take a decision
regarding which transaction to abort. The victim can be
chosen based on various conflict resolution policies
briefly discussed as follows.

i) Time-stamp: Transactions are assigned a
timestamp using the real time clock on begin. When a
conflict is detected, the time-stamps of the conflicting
transactions are compared. Logically later transactions are
forced to either stall or abort. Using this scheme, the oldest
transaction gets the highest priority.

 ii) Write-set size: Write-set size is the number of
blocks (depending on granularity) modified by a
transaction. This scheme suggests aborting a transaction
that has modified comparatively less number of locks
involves is cost-effective.

iii) Polite: It uses an exponential back-off strategy
to resolve the conflict. The transaction is aborted after a
specific number of unsuccessful attempts to commit.

iv) Polka: It uses a back-off strategy for conflict
resolution. The back-off interval is proportional to the
difference in priorities between the conflicting
transactions.
Most implementations choose the victim depending on its
age (time-stamp) or its write-set size. Therefore we
include only these two policies in our tree structure,
Figure 4. However, it may be noted that proposals may
use others mentioned above as well. Figure 1 outlines a
taxonomy based on parameters described above.

Figure 1: Taxonomy based on conflicts

We now present case studies each representing one of the
paths in the tree structure in Figure 4 constructed on basis

Shweta Kulkarni et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (2) , 2011, 766-775

767

of the taxonomy. In addition, we also represent some
other proposals in the tree structure. Some proposals
specify only some parameters described above and leave
the rest flexible for system design.

Log-TM [20]: Eager-Eager: It advocates use of
the eager-eager conflict detection-version management
scheme. Log-TM stores old data values in a per-thread log
in virtual memory while new values are directly written
into the memory locations. To abort, Log-TM has to write
back old values to their addresses by referring the log
making the process slower. As with the eager versioning
scheme, commits are faster and aborts slower. It enables
eager conflict detection by using directory based MOESI
cache coherence protocol. The coherence protocol is
extended to handle even the blocks that are evicted from
the cache. On detection of a conflict, Log-TM either stalls
or aborts one of the transactions. Log-TM makes aborts
less common by using stalls to resolve conflicting
transactions when deadlock is not possible. In cases where
a transaction could lead to a deadlock, it traps to a
software conflict handler. Transactions are ordered using
the time-stamp method where logically earlier
transactions are forced to abort or wait.

HyTM [2]: Lazy-Lazy: HyTM uses best effort
hardware transactional memory. It first tries to execute
transaction in hardware, if hardware resources exhausted
then it executes the transaction in STM. This approach
uses Lazy-Lazy conflict detection and version
management scheme. A contention manager is used to
resolve conflicts. The decision regarding whether to stall
or abort transaction, which transaction to abort is left to
the manager. The victim transaction is chosen on basis of
the timestamp method described above. It supports nested
transactions with flattening, gives weak isolation for
transactional blocks.

Dynamic Software Transactional memory
(DSTM) [9]: Eager-Lazy: Dynamic Software TM was
proposed to support dynamic-sized data structures which
create transactions dynamically. DSTM a low-level (API)
application programming interface uses C++ and Java
API„s to program dynamic data structures. DSTM
exploits obstruction free mechanism for synchronizing
shared memory. It is an example which employs lazy
version management in combination with eager conflict
management policy. DSTM uses an explicit contention
manager to resolve conflicts. The policy to choose the
victim also depends on the contention manager. It
supports flattened nested transactions and also provides
weak isolation with object-based granularity.

EazyHTM [27]: Eager-Lazy: EazyHTM employs
lazy version management in combination with eager
conflict detection policy. It enables eager conflict
detection by using directory based MOESI cache
coherence protocol. By making small hardware
modifications in the protocol the EazyHTM detects
conflicts eagerly and resolves them lazily by either
aborting or stalling the conflicting transaction to avoid

cascading waits. EazyHTM proposal leads to faster
commits and aborts and allows non-conflicting
transactions to commit in parallel. It provides strong
isolation for the transactional blocks. Thus it provides
remarkable performance improvements compared to the
prior HTM designs.

B. Taxonomy based on modifications

While implementing a TM system, changes may be made
to one or both of the processor local hierarchy and the
operating system. Many implementations also use some
software support along with TM modified processor.
There also exist some proposals implementing TM
entirely in software without any support from the
underlying system. The proposals can be sorted as per the
regions defined by a Venn diagram as shown in Figure 2.

Figure 2: Classification based on modifications

Proposals lying in each region of the Venn diagram have
some advantages and drawbacks. Table 1 highlights the
advantages and drawbacks of the modifications. We now
present case studies each describing modifications at
different levels.

Unbounded transactional memory [18]: This

approach requires modifications to both the processor

chip and the memory subsystem. The processor is

modified to support unbounded transactions. New

instructions are added to the instruction set architecture.

Modification in form of „S‟ (saved) bit is required for

handling rollback. This proposal uses snapshot for register

renaming table instead of physical registers. This ensures

that before transaction commits, data in the physical

registers is not reused. „S‟ bit vector in the snapshot

tracks the physical structure, maintains register reserved

list to avoid overwriting of transactions. For committed

transaction value of „S‟ bit vector is cleared and data form

register reserved list is copied to register free list. For

aborted transaction contents of the renaming table are

restored.

McRT-STM [14]: McRT is basically a software

transactional memory build within a multi-core run time

(McRT) to support C/C++ applications. It is the first

algorithm for C/C++ and other applications that use

explicit memory management. In McRT synchronization

Shweta Kulkarni et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (2) , 2011, 766-775

768

is achieved by using a two-phased locking protocol that

permits multiple concurrent transactions to read and only

one transaction to modify. In order to reduce conflicts,

McRT employs a scheduler that performs pre-emption to

prevent inactive transactions from blocking other active

TABLE 1: Advantages and drawbacks

Modification in Advantages Drawbacks

Processor local
hierarchy only

[18][19][12]
[20][21][23]
[24][26][28]

- high
performance

- high atomicity

- high implementation and
verification cost

- no support for context
switches

- limit on transaction size

- impose constraints on
programmer

Software only

[10][11][13]
[15][16][29]
[30][31][33]
[34][35]

- no hardware
support needed

- flexibility

- no hardware
cost

- high overheads

- slow

- lower execution speed as
compared to hardware
only proposals

Processor
hierarchy and
Software

[1][2][3][4]
[5][6][7][8]

- combines
benefits of
hardware and
software
support

- can exploit best
effort hardware
support to boost
performance

- extends execution time of
large transactions

- most implementations
rely completely on
software exception
handling.

Processor and OS
[25]

- Supports
Unbounded
transaction
sizes

- flexible

- high
performance
and strong
atomicity

- memory overhead as
compared to hardware
proposals

Software and OS
[44]

- improved
transaction
throughput as
compared to
only software

- kernel level
scheduling
support
significantly
reduces number
of aborts

- lower execution speed as
compared to only
hardware proposals

All [32] - Shrinks the
functionality
gap between
hardware TM
systems and
software ones

- does not rely
completely on
user mode
exception
handling as in
hybrid systems

- lower execution speed as
compared to only
hardware proposals

transactions. The former STM were based on non-

blocking design that used complex memory management

schemes like the hazardous pointers. In contrast McRT

uses a shared memory allocator. By employing this

method the numbers of aborts have been reduced and

memory management has been simplified.
Hybrid transactional memory [1]: This scheme

lies in between only hardware and only software
approaches. It uses software mechanism only if the
transaction exceeds hardware resource limitations.
Implementing HyTM requires some modifications at the
processor level. Hardware for transactional memory
includes a transactional state table and a transactional
buffer. The transactional state table provides an entry for
each hardware context on the processor to track the mode
of transactional execution of that hardware context. Each
entry in the transactional buffer holds both (old and new)
values, bit vectors to indicate which hardware contexts
have speculatively read or written the line, and the
conventional tag and state information. Apart from that,
additional bits are provided for each line for conflict
detection. The software scheme for handling transactions
that exceed hardware limits is based on DSTM [9]. This
approach combines the performance benefits of a pure
hardware scheme with the flexibility of a pure software
scheme.
 HTMOS (Hardware Transactional Memory with

Operating System Support) [25]: HTMOS is a

modification to the conventional Hardware Transactional

Memory (HTM). This implementation suggests changes

in OS virtual memory mechanism and architecture instead

of the cache subsystem to support allocation and

manipulation of memory space for bookkeeping.

Performance improvement is achieved by introducing

some new data structures and modifying the existing ones

at the OS level. For example the Page Table in the classic

OS implementation is extended to be Virtual Page Table

(VPT), which holds addresses of the secondary copy of

the pages. The various changes made result into making

the HTMOS fast, simple like HTMs and flexible like

STMs. It supports unbounded transactions, reduces read-

write overhead of transactions, is fast like other HTMs

and provides strong atomicity.The drawback of this

implementation is that it requires a lot of memory for

maintaining page information.

Scheduling Support for Transactional Memory

Contention Management [44]: TM implementations have

traditionally used user-level software contention managers

to resolve conflicts. However, these contention managers

do not ensure reasonable performance under high

workloads. This algorithm uses a shared memory segment

to provide lightweight communication between the user-

level STM library and the kernel-level scheduler. The

shared memory region contains a table of consisting of

elements equal in number to the maximum number of

threads. Each element is a structure that stores STM

information for a given thread. The OS thread structure is

augmented with a pointer to the respective entry in the

Shweta Kulkarni et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (2) , 2011, 766-775

769

table. Child threads are subsequently linked to the next

available entry as part of their STM initialization process.

Thus the interaction with kernel is simplified as the

application simply fills in data in the shared structure.

There is no direct user-kernel interaction. This approach

has been implemented Linux and Solaris and has proved

to be effective in reducing the number of aborts and

retaining throughput even under high contention.

Extending Hardware Transactional Memory to

Support, Non-bus, Waiting and Non-transactional Actions

[32]: This proposal demonstrates software ideas adapted

to work in hardware system with some support from the

OS. This paper attempts to shrink the functionality gap

between software transactional memory systems and

hardware ones. The paper focuses on the Virtual

Transactional Memory (VTM) [19], which is a combined

hardware-software implementation. Much of the software

stack associated with VTM is implemented as part of the

Linux kernel in this proposal. The VTM

hardware/software interface contains two main data

structures - The global transaction state segment (GTSS)

that holds the overflow count and a pointer to the XADT

structure discussed in [19]. The kernel allocates one

GTSS per address space and local transaction state

segment (LTSS) per thread. Pointers to these data

structures are written into separate registers on a context

switch. Most kernel modifications are encountered only

by the transacting instructions and thus the impact on

other instructions is minimal.

C. Taxonomy based on other parameters

Several other parameters can be taken into consideration
while designing a TM system. These are described as
follows.
Nesting: Transactional nesting allows a transaction to
start inside another. There are three basic mechanisms that
support nesting viz. Flattening, open and closed nesting.

i) Flatten: The flattening model includes all
nested transactions in the outmost transaction. All
transactions share a common read and write-set. On
completion of the inner transaction, the outer transaction
resumes execution. However, conflict with an inner
transaction forces the outer ones to abort as well.

ii) Closed nesting: Closed nesting allows partial
abort i.e. only the conflicting inner transaction is aborted
and re-executed. The nested transactions have their own
read and write sets which merge with the sets of the outer
level on commit. On abort, the innermost conflicting
transaction rolls back to its original states but not to the
top level.

iii) Open nesting: When an open nested
transaction commits, its read-write sets are visible to all
other transactions. The new values of data can be
accessed without having to wait for the outer transaction
to commit. Rollback and commit is thus independent of
the outer parent transactions.

Isolation or atomicity: Isolation can be strong or weak.
When non-committed updates cannot be read from the
outside of a transaction, isolation is said to be strong.
Strong isolation is easier to implement in hardware using
cache coherence protocols to track reads and writes. Most
HTM proposals provide strong isolation. When non-
transactional code can read non-committed updates,
isolation is said to be weak. Shared data may be accessed
from outside a transaction that was supposed to be
executed atomically. Weak isolation model is easier to
implement than strong isolation one but provides a less
intuitive model to the programmer.
Memory model: TM system designers have chosen either
the shared memory or the message passing model.

i) Shared memory: In shared memory systems
communication takes place implicitly through load and
store instructions to a global address space.
Synchronization and communication are distinct in this
model. Shared memory is a simple programming model
but it has a complex hardware configurations.

ii) Message passing: Message passing system is
like an interrupt driven system where communication
takes place explicitly through messages between
processors. Synchronization is achieved through sending
and receiving of messages between processors. Message
passing makes software design difficult.

As seen, both these model have their drawbacks.
An ideal model would be the one which combines the
benefits of both. It should present a shared model to
programmer while at the same time take advantage of
inherent synchronization and latency-tolerance of
message passing protocols. Such a model has been
proposed by TCC [17]. With immense inter-processor
bandwidth available in new systems, it is now possible to
exploit it and implement such a model.
Granularity: It indicates the size of the read/write sets
that are tracked for conflict detection. Conflict detection is
usually done at the word granularity, cache line
granularity, or object granularity.

i) Word granularity: Using word granularity
prevents false sharing but introduces higher space and
time overhead.

ii) Cache line granularity: It is the preferred
granularity for hybrid and hardware systems. However it
poses a risk of false sharing.

iii) Object granularity: It is commonly seen in
software implementations as it is convenient for the
programmer. However, object granularity may also lead
to false sharing.
Table 2 shows proposals classified as per above
parameters.

D. Classification of Transactional memory based on

energy consumption

Transitional memory proposals discussed so far have
chiefly considered the aspects of throughput efficiency
and ease of programming for evaluating the system.
Energy efficiency for evaluating TM on embedded

Shweta Kulkarni et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (2) , 2011, 766-775

770

systems was first considered by Ferri [40] .Unlike general
purpose systems, energy consumption parameter is of
utmost importance in embedded systems. We review
different approaches for implementing TM on embedded
systems in this paper. We consider aspects of energy
efficient TM design [40] such as memory hierarchy,
contention management and shutdown mode. Figure 3
shows embedded-TM classification.
Memory hierarchy:
There are three ways in which different cache structures
can be used in the memory hierarchy.

i) L1 with Transactional Cache (TC): As the
basic architecture we consider Embedded-TM [36] which
stores non-transactional data in a comparatively larger L1
cache and transactional data is stored in smaller, fully
associative TC. However, the transactional cache
consumes a lot of energy.

Figure 3: Taxonomy for embedded TM system

Another drawback of this architecture is that for larger
transaction which cannot be accommodated, it continues
with a much less efficient serial mode execution.

ii) Only L1: To address the limitations associated with
TC model there is another model proposed in which both
transactional and non-transactional data is kept in the L1
cache. This design eliminates the need of maintaining
coherency between the caches on the same level. As L1 is
much larger as compared to TC the possibility of
transactional overflow is considerably reduced. However,
this design is still limited by resource constraints.

iii) L1 with Victim Cache (VC): Use of victim cache
between L1 and main memory overcomes drawbacks of
the other two architectures. The data primarily resides in
the L1 cache. The victim cache is used only when a
transactional entry is evicted from the L1 cache. In this
case as well, the caches are accessed sequentially, first the
L1 cache and then the VC after L1 lookup fails. Here VC
can be designed to be smaller than the TC used in the base
Embedded-TM architecture [36]. Since L1 is backed up
with VC there is enough space for transactions making
overflows less common. As VC is used only when L1
cache cannot support the transactions, it is favorable to

keep VC powered down until needed. The L1+VC scheme
is better than L1+TC scheme. [36]
Conflict detection and resolution:

 When a transaction detects conflict with another,
one of them needs to abort. The general Back-off strategy
used in other TM proposals is inefficient in terms of
energy. For embedded systems, we consider following
conflict resolution schemes-

i) Eager: This method suggests that a data
conflict is detected as soon as a transaction tries to access
the modified line in shared memory. This approach is
advantageous because it does not require any radical
changes in the original cache coherence protocol. It
performs well when the data conflict rate is low but fails to
do so when the data conflicts occur at a higher rate.

ii) Lazy: This is a more complex alternative for
conflict resolution, useful in the higher data conflict rate
environment. The conflicts are detected as before and
instead of resolving them at the time they are detected,
they are left unresolved until the commit time. Lazy
resolution implies substantial changes to the platform and
the architecture and sometimes might penalize a low
conflict transaction but is well suited for high-conflict
transactions. It improves both performance and energy
efficiency as compared to the eager scheme.

iii) Forced serial: It is another approach that is
feasible for higher data conflict rates. It can be run on top
of eager or lazy contention management. The system
reverts to serialized execution if a transaction has been
aborted more than once. Once the transaction completes,
the system reverts back to its original conflict resolution
policy (i.e., eager or lazy).The brute-force approach is
attractive for its simplicity and wide range of
effectiveness, and it works moderately well most of the
time.
Shutdown: The shutdown mode can be normal or
aggressive.
 Aggressive shutdown: In this mode, the modified lines
are written back to the memory hierarchy on transaction
commit. This allows the transactional cache which is not
in use to be powered down leading to efficient energy
usage. It can be implemented in two ways.

i) L1 WB: Here the modified lines are written
back only to L1 cache before TC is powered down.

ii) L2 WB: Here the modified lines are written
back to L1 and L2 cache before TC is powered down.

III. OTHER APPROACHES

Though the transactional memory approach is fetching a

lot of attention in the parallel computing domain, there are

few drawbacks found, especially for the Software

Transactional Memory approach. In the following section

we discuss a few approaches that talk about alternatives to

pure Transactional Memory.

Adaptive Locks: Combining Transactions and

Locks for Efficient Concurrency. This is an approach

which considers the combination of both transactions and

Shweta Kulkarni et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (2) , 2011, 766-775

771

locks in order to achieve the best performance in terms of

synchronization. The programmer specifies the critical

section. Using an adaptive locking technique, the decision

whether to execute the critical section using transactions

or with holding mutex locks is taken. According to the

experiments performed on various benchmarks by Usui

et al. [45], adaptive locks consistently outperform either

of its two components (locks & transactions) used

individually. It is observed that this implementation

provides speedups and simplifies the programming model.
TLRW: The new algorithm TLRW [41] is based

on byte locks for single-chip multi-core systems. The
design of TLRW is simple and streamlined as compared
to the lock free STM systems and delivers scalable
performance. Read-write lock-based STMs are a viable
approach for single chip multi-core systems with strong
progress properties and support for irrevocable
transactions but for two chip multi-core systems a lock-
free STM is a better approach.

Haris Volos et. al. [42] discusses behaviour of
locks and TM when used together in a code based on five
pathologies viz. blocking, deadlocks, livelocks, early
release and invisible locking. The proposed method uses a
modified lock implementation and extension of conflict
detection policy of a HTM. The approach is a transaction-
safe locks approach where a lock is accessed both within
and outside a transaction. The paper concludes that the
pathologies occur because of any of the following:
(1) Transaction conflict resolution is un-aware of locks
(2) Lock variables may be locked both at the memory
level (by TM) and logical level (by locks)
(3) System does not respect lock semantics during abort
of commit operations.
 Polina Dudnik et al. [43] discuss how transactional
memory implementations do not consider conditional
variables mechanism in their design. They propose
alternative methods to implement conditional variable so
as to suit TM.

IV. CONCLUSIONS

In this paper we present taxonomy for TM
systems based on parameters like conflict detection,
version management, energy, memory model and
isolation. We also give a brief introduction to other
approaches apart from locks and TM.

We observe that hardware implementations
adopt eager conflict detection-eager version management
approach. On the other hand, software approaches prefer
eager conflict detection and lazy or eager version
management.

Secondly, most hardware proposals choose the
victim based on timestamp or write-set resolution policy.
An equally large number resort to a software contention
manager, most of them being software proposals.

As seen in the Venn diagram, comparatively few
proposals have implemented TM with support from
Operating System. Future implementations are likely to

use Operating System support considering the advantages
it offers.

From Table 2, we see that Hardware proposals
prefer cache-line granularity while software proposals
prefer object granularity. Most proposals prefer a shared
memory model. This is probably due to insufficient intra-
processor bandwidth. However as newer systems promise
higher bandwidth, proposals which use a combination of
both such as TCC [17], LogTM [20], EazyHTM [27],
TTM [30] can be used in future.

We conclude that for implementing TM in
embedded system we can have a number of different
approaches. L1 with victim cache is beneficial in the
scenario where there are memory constraints. Eager and
Lazy conflict detection policies are used in different data
conflict rates. In most of the cases aggressive shutdown
mode is used for energy efficiency [36].

Figure 4: Classification of proposals based on conflict related parameters

Shweta Kulkarni et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (2) , 2011, 766-775

772

Table 2: Classification based on other approaches

Scheme Isolation Nesting Granularity
Memory

model
DSTM [9] Weak Flattened Object Shared

ASTM [10] Weak Not supported Object Shared

McRT STM [14] Weak Closed Cache-line or object Shared

TL2 [11] Weak Not supported Word, object Shared

DracoSTM [16] Weak Closed Object Shared

Strongly Atomic
STM [12]

Strong Closed Object Shared

Elastic

Transactions [15]
Weak Supported Word Shared

Swiss TM [13] Weak Not supported Word Shared

HyTM [2] Weak Flattened Word, Cacheline Shared

Hybrid TM [1] Weak Flattened Object, Cacheline Shared

PhTM [6]
Weak

&Strong

Sometimes

supports
Word, Cacheline Shared

NZTM [5] Weak Not supported Object, Cacheline Shared

SigTM [4] Strong Supported Word, Cacheline
Message
passing

UFO hybrid TM

[7]
Strong Flattened Cacheline Shared

SpHT [8] Strong Open & Closed Cacheline Shared

LogTM_SE [22] Strong Open & Closed Block, Page Shared

OneTM [21] Strong Flattened Cacheline Shared

TCC [17] Strong Flattened Object, Cacheline

Shared and

message
passing

TokenTM [28] Strong - Block Shared

LTM [18] Strong Flattened Cacheline Shared

UTM [18] Storng Flattened Cacheline Shared

VTM [19] Strong Flattened Cacheline Shared

LogTM [20] Strong Flattened Word, Cacheline

Shared and

message

passing

HMTM [23] Strong - Cacheline Shared

HTMOS [25] Weak flattened Cacheline Shared

EazyHTM [27] Strong Not specified Cacheline

Shared and

message
passing

TTM [30] Strong flattened Word, Cacheline

Shared and

Message

passing

Shweta Kulkarni et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (2) , 2011, 766-775

773

V. REFERENCES:

[1] S.Kumar, M.Chu, C. J. Hughes, P. Kundu, and
A.Nguyen, “Hybrid Transactional Memory”, 11th
ACM Symposium on Principles and Practice of
Parallel Programming, March 2006.

[2] P. Damron, A. Fedorova, Y. Lev, V. Luchangco, M.
Moir, D. Nussbaum, “Hybrid transactional memory”,
12th International Conference on Architectural
Support for Programming Languages and Operating
Systems, 2006, pp. 336–346.

[3] Shriraman, M. F. Spear, H. Hossain, V. Marathe,S.

Dwarkadas, M. L. Scott, “An integrated hardware-

software approach to flexible transactional memory”,

34th International Symposium on Computer

Architecture, 2007, pp. 104–115.

[4] Cao Minh, M. Trautmann, J. Chung, A. McDonald,N.

Bronson, J. Casper, C. Kozyrakis, K. Olukotun, “An

effective hybrid transactional memory system with

strong isolation guarantees”, 34th International

Symposium on Computer Architecture, 2007, pp. 69–

80.

[5] F. Tabba, M. Moir, J. R. Goodman, A. W. Hay, C.

Wang, “NZTM: Nonblocking zero-indirection

transactional memory”,21st Symposium on

Parallelism in Algorithms and Architectures, 2009, pp.

204–213.

[6] Y. Lev, M. Moir, D. Nussbaum, “PhTM: Phased

transactional memory” Workshop on Transactional

Computing (TRANSACT), 2007.

[7] L. Baugh, N. Neelakantam, C. Zilles, “Using hardware

memory protection to build a high-performance,

strongly-atomic hybrid transactional memory“, 35th

International Symposium on Computer Architecture,

2008, pp. 115–126.

[8] Y. Lev, J.W. Maessen, “Split hardware transactions:

true nesting of transactions using best-effort hardware

transactional memory”, 13th ACM SIGPLAN

Symposium on Principles and Practice of Parallel

Programming, 2008, pp. 197–206.

[9] M. Herlihy, V. Luchangco, M. Moir, W. N. Scherer

III, “Software transactional memory for dynamic-sized

data structures”, 22nd Symposium on Principles of

Distributed Computing, 2003, pp. 92–101.

[10] V. J. Marathe, W. N. Scherer III, M. L. Scott,

“Adaptive software transactional memory”, 19th

International Symposium on Distributed Computing,

Vol. 3724 of Lecture Notes in Computer Science,

2005, pp. 354–368.

[11] Dice, O. Shalev, N. Shavit, “Transactional locking II”,

Proc. of the 20th Int‟l Symp. Distributed Computing,

Vol. 4167 of Lecture Notes in Computer Science,

2006, pp. 194–208.

[12] M. Abadi, T. Harris, M. Mehrara, “Transactional

memory with strong atomicity using off-the-shelf

memory protection hardware”, 14th ACM Symposium

on Principles and Practice of Parallel Programming,

2009, pp. 185–196.

[13] Dragojevi´c, R. Guerraoui, M. Kapalka, “Stretching

transactional memory”, ACM SIGPLAN Conference

on Programming Language Design and

Implementation, 2009, pp. 155–165.

[14] B. Saha, A.-R. Adl-Tabatabai, R. L. Hudson, C. Cao

Minh, B. Hertzberg, “McRT-STM: a high

performance software transactional memory system

for a multi-core runtime”, 11th ACM SIGPLAN

Symposium on Principles and Practice of Parallel

Programming, 2006, pp. 187–197.

[15] P.Felber, V. Gramoli, R. Guerraoui, “Elastic

transactions”, 23rd International Symposium on

Distributed Computing, Vol. 5805, 2009, pp. 93–107.

[16] J.E. Gottschlich, D. A. Connors, “DracoSTM: a

practical C++ approach to software transactional

memory”, Symposium on Library-Centric Software

Design, 2007, pp. 52–66.

[17] L. Hammond, V. Wong, M. Chen, B. D. Carlstrom, J.

D. Davis, B. Hertzberg, M. K. Prabhu, H. Wijaya, C.

Kozyrakis, and K. Olukotun, “Transactional memory

coherence and consistency”, 31st Annual International

Symposium on Computer Architecture, June 2004.

[18] C. S. Ananian, K. Asanovic, B. C. Kuszmaul, C. E.

Leiserson, S. Lie, “Unbounded transactional

memory”, 11th International Symposium on High-

Performance Computer Architecture, 2005, pp. 316–

327.

[19] R. Rajwar, M. Herlihy, K. Lai, “Virtualizing

transactional memory”, 32nd International

Symposium on Computer Architecture, 2005, pp.

494–505.

[20] K. E. Moore, J. Bobba, M. J. Moravan, M. D. Hill, D.

A. Wood, “LogTM: Log-based transactional

memory”, 12th International Symposium on High-

Performance Computer Architecture, 2006, pp. 254–

265

[21] C. Blundell, J. Devietti, E. C. Lewis, M. M. K. Martin,

“Making the fast case common and the uncommon

case simple in unbounded transactional memory”,

34th International Symposium on Computer

Architecture, 2007, pp. 24–34.

[22] L. Yen, J. Bobba, M. M. Marty, K. E. Moore, H.

Volos, M. D. Hill, M. M. Swift, D. A. Wood,

“LogTM-SE: Decoupling hardware transactional

memory from caches”, 13th International Symposium

on High-Performance Computer Architecture, 2007,

pp. 261–272.

[23] M. Herlihy, J.E.B. Moss, “Transactional memory:

architectural support for lock-free data structures”,

20th Annual International Symposium on Computer

Architecture, 1993, pp. 289–300.

[24] K.E. Moore, M.D. Hill, and D.A. Wood, “Thread-

level transactional memory”, Technical Report: CS-

TR-2005-1524, Dept. of Computer Sciences,

University of Wisconsin, Mar. 2005.

[25] Sasa Tomic , Adrian Cristal , Osman Unsal , Mateo

Valero, “Hardware transactional memory with

operating system support”, Conference on Parallel

processing, 2007

[26] Jayaram Bobba, Kevin E. Moore, Haris Volos, Luke

Yen, Mark D. Hill, Michael M. Swift, and David A.

Wood, “Performance Pathologies in hardware

Shweta Kulkarni et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (2) , 2011, 766-775

774

transactional memory”, 34th International Symposium

on Computer Architecture, June 2007.

[27] S. Tomi´c, C. Perfumo, C. Kulkarni, A. Armejach, A.

Cristal, O. Unsal, T. Harris, M. Valero, “EazyHTM:

Eager-lazy hardware transactional memory”, 42nd

International Symposium on Microarchitecture, 2009,

pp. 145–155.

[28] J. Bobba, N. Goyal, M. D. Hill, M. M. Swift, D. A.

Wood, “TokenTM: Efficient execution of large

transactions with hardware transactional memory”,

35th International Symposium on Computer

Architecture, 2008, pp. 127–138.

[29] N.Shavit, D.Touitou, “Software transactional

memory”, 14th ACM Symposium on Principles of

Distributed Computing, 1995, pp. 204–213.

[30] T.Riegel, C.Fetzer, P. Felber, “Time-based

transactional memory with scalable time bases”, 19th

ACM Symposium on Parallelism in Algorithms and

Architectures, 2007, pp. 221–228.

[31] M. Herlihy, V. Luchangco, M. Moir, “A flexible

framework for implementing software transactional

memory”, 21st ACM SIGPLAN Conference on

Object-Oriented Programming Systems, Languages,

and Applications, 2006, pp. 253–262.
[32] Craig Zilles, Lee Baugh, “Extending Hardware

Transactional Memory to Support,Nonbusy Waiting

and Nontransactional Actions”, Computer Science

Department,University of Illinois at

UrbanaChampaign

[33] A.-R. Adl-Tabatabai, B. T. Lewis, V. Menon, B. R.

Murphy, B. Saha, and T. Shpeisman, “Compiler and

runtime support for efficient software transactional

memory”, ACM SIGPLAN Conference on

Programming Language Design and Implementation,

2006, pp. 26–37.

[34] T. Harris and K. Fraser, “Language support for

lightweight transactions”, 18th Conference on Object-

Oriented Programming, Systems, Languages, and

Applications, Oct. 2003, pp. 388–402

[35] T. Harris, M. Plesko, A. Shinnar, and D. Tarditi,

“Optimizing memory transactions”, ACM SIGPLAN

Conference on Programming Language Design and

Implementation, 2006, pp. 14–25

[36] Cesare Ferri, Samantha Wood, Tali Moreshet, Iris

Bahar and Maurice Herlihy, “Embedded-TM: Energy

and Throughput Efficient Transactional Memory for

Embedded Multicore Systems”, Journal of Parallel

and Distributed Computing, Vol 70, Issue 10, Oct

2010,pp,1042-1052

[37] Tali Moreshet, R. Iris Bahar and Maurice Herlihy,

"Energy-Aware Microprocessor Synchronization:

Transactional Memory vs. Locks", Workshop on

Memory Performance Issues, held in conjunction with

the International Symposium on High-Performance

Computer Architecture, February 2006.

[38] Cesare Ferri, R. Iris Bahar, Tali Moreshet, Amber

Viescas and Maurice Herlihy, "Energy Efficient

Synchronization Techniques for Embedded

Architectures", ACM Great Lakes Symposium on

VLSI, May 2008.

[39] Tali Moreshet, R. Iris Bahar and Maurice Herlihy,

"Energy Reduction in Multiprocessor Systems Using

Transactional Memory", International Symposium on

Low Power Electronics and Design, August 2005.

[40] Cesare Ferri, Amber Viesdcas, Tali Moreshet, R. Iris

Bahar and Maurice Herlihy, "Energy Implications of

Transactional Memory for Embedded Architectures",

Workshop on Exploiting Transactional Memory and

Other Hardware-Assisted methods, April 2008.

[41] Dave Dice, Nir Shavit, “TLRW: Return of Read-Write

Lock”, 22nd ACM Symposium on Parallelism in

Algorithms and Architectures, 2010, pp. 284-293

[42] Haris Volos, Neelam Goyal and Michael M. Swift,

“Pathological Interaction of Locks with Transactional

Memory”, 3rd ACM SIGPLAN Workshop on

Transactional Memory (TRANSACT), February 2008.

[43] Polina Dudnik and Michael M. Swift, “Condition

Variables and Transactional Memory - Problem or

opportunity”, 4th ACM SIGPLAN Workshop on

Transactional Computing, TRANSACT 2009.

[44] Walther Maldonado, Patrick Marlier,Pascal Feber,

Danny handler, Adi Suissa, Alexndra Fedorova,Julia

L. lawall,, Gillies Muller ,Danny handler,” Scheduling

Support for Transactional Memory Contention

Management”,Principals and practice of parallel

programming ,Procedings of the 15th,ACM SIGPLAN

symposium on Principals and practice of parallel

programming,2010,banglore,India

[45] Takayuki Usui and Yannis Smaragdakis and Reimer

Behrends,”Adaptive Locks: combining Transactions

and Locks for Efficient Concurrency”,

in: TRANSACT~'09: 4th Workshop on Transactional

Computing.

[46] Chen Fu, Dongxin Wen, Xiaoqun Wang and Xiaozong

Yang, “Hardware Transactional Memory: A high

performance parallel programming model”, The

EUROMICRO Journal of Systems Architecture,

Volume 56 , Issue 8, Aug 2010, Pages: 384-391

[47] Anurag Negi, MM Waliullah and P. Stenstrom, “LV*:

A low complexity Lazy Versioning HTM

Infrastructure” ", In proceedings of 10th IEEE

International Conference on Embedded Computer

Systems: Architectures, Modeling, and Simulation

(IC-SAMOS), Greece, July 2010.

[48] Anurag Negi, MM Waliullah and P. Stenstrom, “LV*:

A Class of Lazy Versioning HTMs for Low-Cost

Integration of Transactional Memory Systems” 2nd

ACM International Forum on Next Generation

Multicore/Manycore Technology, in conjunction with

ISCA 2010, Saint Malo, France, June 2010.

[49] Gramoli Vincent, Guerraoui Rachid, Letia Mihai,

“The Many Faces of Transactional Software

Composition”, Technical Report, EPFL-REPORT-

150654, Aug 2010

Shweta Kulkarni et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (2) , 2011, 766-775

775

